Campus Partnerships Improve Impact Documentation of Nutrition Programs

Abstract
Partnerships with other campus college units can provide ways of improving Extension’s impact documentation. Nutrition programs have relied upon knowledge gained and people's self report of behavior change. Partnering with the College of Nursing, student nurses provided blood screenings during the pre and 6 month follow-up of a pilot heart risk reduction program. Using blood screenings for diabetes, heart disease, and other nutrition programming would provide reliable documented behavior change when it occurred. Screenings could strengthen Extension's value to the community and assist in improving programming.

Introduction
Could partnering with different campus colleges increase impact documentation of Extension programming? A growing number of Extension professionals are partnering with other campus colleges and non-Extension faculty to assist with programming efforts and assessments. Extension educators from The University of Kentucky implemented a successful physical activity program for their state with the help of the University of Kentucky's College of Public Health, Social Work, Medicine, Nursing, Dentistry, and Pharmacy (Rice, 2007). Iowa State University partnered with non-Extension faculty to assess chronic disease among low-income populations to project future health care needs and costs (Greder, Garasky, & Klein, 2007).

According to Scatchfield, Harris, Tanner, and Murray (2007, Introduction section para.3), "Evolving concerns and focus require new partnerships between Cooperative Extension Service colleges and research centers on university campus." Health care prevention programming would benefit from partnerships with health centers on campus, improving Extension's outreach of health education and behavior changes. In fact, Washington State University Extension's survey found more partnerships with university departments would improve delivery of best practice prevention programs. Collaboration with campus-based faculty would increase evaluation components offering better
documentation of long term program impacts (Hill & Parker, 2005).

A recent search of journals suggested a continued lack of partnering for program impact documentation. Impact documentation should include behavior changes (intermediate) and social, economic, and environmental condition changes (long-term), rather than solely focusing on short-term impacts, such as the number of participants reached and knowledge gained. Reporting intermediate and long-term impacts will better help stakeholders understand the value of Extension programs (Lamm, Israel, & Diehl, 2013).

Objective

Behavior change, an intermediate impact, provides better accountability. Behavior change relies on a pre and a post (usually at least 3- to 6-month follow-up) survey. The pre and last class surveys are performed to document increased knowledge with a desire to change. Obtaining follow-up survey data to determine if the change has actually occurred or the desired behavior has become a habit is much more difficult to achieve.

Although people say they changed their behavior, did they really change, or are they telling you what they know you want to hear? Relying on individuals' self-reporting, instead of dollars or factual data, can create questions about reliability due to participants reporting according to anticipated responses (Chipman & Litchfield, 2012).

According to Contento, Randell, and Basch (2002), behavior change in nutrition education programs has been documented by various methods. One method includes physiologic measures. These measures include blood pressure, adiposity, serum lipids, and, in some cases, physical fitness. These measures are a preferred method of data collection for nutrition programs because they indicate health outcomes (Contento, Randell, & Basch, 2002). Medical screenings provide reliable statistical data. One way in which Extension programs could obtain medical data would be to partner with their university's nursing or medical college to perform medical screenings. This option would help determine if an individual's behavior changes result in changes to blood pressure, weight, blood cholesterol statistics, or A1C (a diabetes test). If the individual shares these screening results, nutrition programs could determine if significant behavior change has taken place.

Description

Many nutrition programs can be easily linked to medical statistics. Blood screening results help determine if participants do change their behavior in nutrition programs, especially heart disease, hypertension, and diabetes. Many diabetes programs request participants to provide their A1C level at the beginning of a series of programs and at 3-months or later follow-up. This measurement holds the participants accountable and can provide the Extension educator with improved impact results. Unfortunately, many diabetes programs have usually been primarily reliant on the participants being truthful and providing their levels.

Partnering with the College of Nursing through and Ohio State University Cares Grant, Extension educators used graduate student nurses to perform pre-class screenings and 6-month follow-up screenings of participants in a pilot heart disease reduction and prevention series. The free screenings
provided participants with their health statistics for blood pressure and cholesterol (including LDL, HDL, and triglycerides). Participants voluntarily provided their updated medical statistics on the pre and 6-month follow-up surveys. The acquisition of reliable medical statistics allows the educator to compare pre and post data to determine if the participant is making better lifestyle choices. Providing accountability through medical screenings increases the reliability of data collected and allows for more effective analysis of intermediate and long-term health outcomes related to programming efforts.

Data from the pilot class on heart disease showed decreases in blood pressure and cholesterol, potentially reducing their risk of heart disease. Having a 6-month follow-up provided the possibility of identifying some change in medical blood work.

Implications for Extension

Partnerships do take additional time and planning. However, this can be simplified by working with university partners (in this case, through a program leader with the College of Nursing acting as a contact person and coordinating medical screenings). In the grant program described here, graduate nursing students did the free screenings because they were required to do a set number of screenings for a class requirement. This partnership activity provided students with practical training that also benefited the community (Boeckner, Gross, Chaulk, Ramsey, Ruff, & Tando, 2000).

Grant funds provided supplies for blood screening checks. The College of Nursing laboratory allowed necessary equipment to be borrowed. Supply costs were minimal and could be built into programming costs or provided by grant funding. Partnering with the College of Nursing at The Ohio State University allowed Extension to examine and determine if behavior change from programming was really happening in this heart risk reduction program. As the program is expanded, this information will provide evaluative data to improve the curriculum and track program effectiveness.

Medical screenings can provide accurate impact evaluation and information to class participants. Other nutrition programming could benefit in exploring and partnering with nursing or medical colleges on campus. Extension educators need to explore links with the different colleges on campus to improve documentation for impacts, as well as improving programming. This would assist Extension in more effectively documenting the public value of their programs (Lamm, Israel, & Diehl, 2013).

Acknowledgement

This program was funded with a Ohio State University Cares Grant.

References

Copyright © by Extension Journal, Inc. ISSN 1077-5315. Articles appearing in the Journal become the property of the Journal. Single copies of articles may be reproduced in electronic or print form for use in educational or training activities. Inclusion of articles in other publications, electronic sources, or systematic large-scale distribution may be done only with prior electronic or written permission of the *Journal Editorial Office, joe-ed@joe.org*.

If you have difficulties viewing or printing this page, please contact *JOE Technical Support*.

©2015 Extension Journal Inc. 3